Site Search  

Teaching » Syllabus: Computational Motor Control and Biomimetic Robotics

All downloadable documents are Adobe Acrobat PDF documents. You can obtain Acrobat for free by following the link from the Adobe Icon.
Date

Topic

Assignments

Sept. 3

Introduction
{0}

Sept. 8

Feedback Control,

Feedforward Control, Linear & Nonlinear Control

{1.1} , {1.2} , {1.3}

Sept. 15

Overview of Biological Motor Control
{2.1} , {2.2} , {2.3},

Sept. 22

Rigid Body Dynamics & Inverse Dynamics,

Supervised Learning for Motor Control

{3.1}, {3.2}, web-book

Sept. 29

Internal Models,

The Cerebellum for Motor Control

{4.1}, {4.2}

Oct. 6

Control in Systems with Time Delays,

Predictive Control  (Kalman Filters, Smith Predictors, Delay-Line Control)

{5.1}, {5.2}

Oct. 13

Classical Trajectory Planning,

Optimization Principles, Reinforcement Learning

{6.1}, {6.2}

Oct. 20

Control Hypothesis from Biology: 

Equilibrium Point Control, Minimum Jerk, Minimum Torque Change, Joint Interpolation

{7.1}, {7.2}, {7.3},

{7.4}

Oct. 27

Advanced Reinforcement Learning
{8.1}, {8.2}

Nov. 3

Multiple Models for Control
{9.1}, {9.2}, {9.3}

Nov. 10

no class

Nov. 17

Movement Imitation & Learning from Demonstration
{10.1}, {10.2}, {10.3}

Nov. 24

Pattern Generators for Motor Control
{11.1}, {11.2}, {11.3}

Dec. 1

Locomotion
{12.1}, {12.2}, {12.3}

Dec. 8

Sensorimotor Transformations 

Review of Course

{13.1}, {13.2},{13.3}

[0]Hildreth, E. C., & Hollerbach, J. M. (1985). The compuational approach to vision and motor control: Massachusetts Institute of Technology, AI Memo 846. Pages 43-68.
[1.1] Hale, F. J. (1988). Introduction to control systems analysis and design. Prentice Hall. Chapter 1.
[1.2] Martins De Carvalho, J. L. (1993). Dynamical systems and automatic control. Prentice Hall. Chapter 1.
[1.3] An, C. H., Atkeson, C. G., & Hollerbach, J. M. (1988). Model-based control of a robot manipulator. Cambridge, MA: MIT Press. Pages 16-20.
[2.1] Kandel, E. R., Schwartz, T. M. J., & Jessel, T. M. (1991). Principles of neural sciences. New York: Elsevier. Chapter 35.
[2.2] Kandel, E. R., Schwartz, T. M. J., & Jessel, T. M. (1991). Principles of neural sciences. New York: Elsevier. Chapter 40.
[2.3] Arbib, M. A. (1989). The metaphorical brain 2: Neural networks and beyond. New York: John Wiley. Pages 87-118.
[3.1] Craig, J. J. (1986). Introduction to robotics. Reading, MA: Addison-Wesley. Chapters 2.7, 2.8, 6.
[3.2] Jordan, M. I. (1996). Computational aspects of motor control and motor learning. In H. Heuer, & S. W. Keele (Eds.), Handbook of perception and action. New York: Academic Press.
[4.1] Arbib, M. A., Érdi, P., & Szentágothai, J. (1998). Neural organization

structure, function, and dynamics. Cambridge, Mass.
MIT Press. Chapter

9.
[4.2] Kandel, E. R., Schwartz, T. M. J., & Jessel, T. M. (1991). Principles of neural sciences. New York: Elsevier. Chapter 41.
 
[5.1]  Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum a Smith predictor? Journal of Motor Behavior, 25, 203-216. 
[5.2]  Maybeck, P. S. (1990). The Kalman filter: An introduction to concepts. In I. J. Cox, & G. T. Wilfang (Eds.), Autonomous Robot Vehicles (pp. 194-204). New York: Springer.
[6.1]  Craig, J. J. (1986). Introduction to robotics. Reading, MA: Addison-Wesley. Chapter 7. 
[6.2]  Kirk, D. E. (1970). Optimal control theory. Englewood Cliffs, New Jersey: Prentice-Hall.
[7.1] Flanagan, J. R., Feldman, A. G., & Ostry, D. J. (1993). Control of trajectory modifications in target-directed reaching. Journal of Motor Behavior, 25, 140-152.
[7.2] Bizzi, E., Acornero, N., Chapple, W., & Hogan, N. (1984). Posture control and trajectory formation during arm movements. J. Neurosci., 4, 2738-2744.
[7.3] Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neurosience, 5, 1688-1703.
[7.4] Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal trajectory in human multijoint arm movement ? Minimum torque-change model. Biol. Cybern., 61, 89-101.
[8.1] Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237-285.
[8.2] Doya, K. (1996). Temporal difference learning in continuous time and space. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in Neural Information Processing Systems 8 (pp. 913-920). Cambridge, MA: MIT Press.
[9.1] Gomi, H., and Kawato, M. Recognition of manipuulated objects by motor learning with modular architecture networks. Neural Networks 6:485-497, 1993.
[9.2] Shadmehr, R., and Brashers-Krug, T. Functional stages in the formation of human long-term motor memory. J Neurosci 17:409-419, 1997.
[9.3] Haruno, M., Wolpert, D. M., and Kawato, M. Multiple paired forward-inverse models for human motor learning and control, Advances in Neural Information Processing Systems 11. Cambridge, MA: MIT Press, 1999.
[10.1] Miyamoto, H., Schaal, S., Gandolfo, F., Koike, Y., Osu, R., Nakano, E., Wada, Y., and Kawato, M. A Kendama learning robot based on bi-directional theory. Neural Networks 9:1281-1302, 1996.
[10.2] Meltzoff, A. N., and Moore, M. K. Infant's understanding of people and things: From body imitation to folk psychology. In J. L. Bermúdez, A. Marcel, and N. Eilan (Eds.), The Body and the Self. Cambridge, MA: MIT Press, pp 43-69, 1995.
[10.3] Rizzolatti, G., Fadiga, L., Gallese, V., and Fogassi, L. Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3:131-141, 1996.
[11.1] Bullock, D., Grossberg, S. (1989). VITE and FLETE: Neural modules for trajectory formation and postural control. In W.A. Hershberger (Ed.), Volitional Action. Elsevier Science Publishers.
[11.2] Matsuoka, K. (1987). Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 56, 345-353.
[11.3] | Schaal, S., Sternad, D. (1998). "Programmable pattern generators." <i>International Conference on Computational Intelligence in Neuroscience</i> (ICCIN'98), Research Triangle Park, NC, Oct.24-28.
[12.1]Duysens, J. and Van de Crommert Henry W.A.A. "Neural control of locomotion; Part 1: The central pattern generator from cats to humans.  <i>Gait and Posture</i>, Vol. 7, pp. 131-141, 1998.
[12.2] Taga, G., Yamaguchi, Y. and H. Shimizu.  "Self-organized control of bipedal locomtion by neural oscillators in unpredictable environment." <i> Biologidal Cybernetics</i>, Vol. 65,  pp.147-159, 1991.
[12.3] Raibert, M., Chepponis, M. and Brown, Benjamin JR.  "Running on four legs as though they were one."  <i>IEEE Journal of Robotics and Automation,</i>Vol. RA-2. No. 2, June 1986.
[13.1]  Crowe, A. Porrill, J. Prescott, T.  "Kinematic Coordination of Reach and Balance. " <i>Journal of Motor Behavior,</i> Vol. 30, No. 3, pp. 217-233, 1998.
[13.2]  Bullock, D., Grossberg, S., & Guenther, F. H. (1993). A self-organizing neural model of motor equivalent reaching and tool use by a multijoint arm. Journal of Cognitive Neuroscience, 5, 408-435..
[13.3]  Copies of  transparancies of a talk on visuomotor control.

Designed by: Nerses Ohanyan & Jan Peters
Page last modified on October 21, 2005, at 05:59 PM