Minimax Differential Dynamic Programming: Application to A Biped Walking Robot

Jun Morimoto
Department of HRCN
ATR Computational Neuroscience Labs
2-2-2 Hikaridai Seika-cho Soraku-gun,
Kyoto, 619-0288, JAPAN
xmorimo@atr.co.jp

Garth Zeglin
The Robotics Institute
Carnegie Mellon University
500 Forbes Ave., Pittsburgh,
PA, 15213, USA
garthz@ri.cmu.edu

Christopher G. Atkeson
The Robotics Institute
Carnegie Mellon University
500 Forbes Ave., Pittsburgh,
PA, 15213, USA
cga@cmu.edu

Abstract—We have developed a robust control policy design method for high-dimensional state spaces by using differential dynamic programming with a minimax criterion. As an example, we applied our method to a simulated five link biped robot. The results show lower joint torques using the optimal control policy compared to torques generated by a hand-tuned PD servo controller. Results also show that the simulated biped robot can successfully walk with unknown disturbances that cause controllers generated by standard differential dynamic programming and the hand-tuned PD servo to fail. Learning to compensate for modeling error and previously unknown disturbances in conjunction with robust control design is also demonstrated. We applied the proposed method to a real biped robot to optimize swing leg trajectories.

I. INTRODUCTION

Reinforcement learning [7] is widely studied because of its promise to automatically generate controllers for difficult tasks from attempts to do the task. However, reinforcement learning requires a great deal of training data and computational resources, and sometimes fails to learn high dimensional tasks. To improve reinforcement learning, we propose using differential dynamic programming (DDP) which is a second order local trajectory optimization method to generate locally optimal plans and local models of the value function [2], [4]. Dynamic programming requires task models to learn tasks. However, when we apply dynamic programming to a real task, handling inevitable modeling errors is crucial. In this study, we develop minimax differential dynamic programming which provides robust nonlinear controller designs based on the idea of \(H_{\infty} \) control [5], [9]. We apply the proposed method to a simulated five link biped robot (Fig. 1). Our strategy is to use minimax DDP to find both a low torque biped walk and a policy or control law to handle deviations from the optimized trajectory. We show that both standard DDP and minimax DDP can find a local policy for a lower torque biped walk than a hand-tuned PD servo controller. We show that minimax DDP can cope with larger modeling error than standard DDP or the hand-tuned PD controller. Thus, the robust controller allows us to collect useful training data. In addition, we can use learning to correct modeling errors and model previously unknown disturbances, and design a new more optimal robust controller using additional iterations of minimax DDP. We also evaluate our proposed method on swing leg optimization task using our real biped robot.

II. DIFFERENTIAL DYNAMIC PROGRAMMING

This section briefly introduces differential dynamic programming (DDP), a local trajectory optimization method. In a dynamic programming framework, we use a value function to generate optimal trajectories. A value function is defined as sum of the accumulated future penalty \(r(x_i, u_i, i) \) and the terminal penalty \(\Phi(x_N) \), given the current policy or control law:

\[
V(x_i, i) = \Phi(x_N) + \sum_{j=i}^{N-1} r(x_j, u_j, j),
\]

where \(x_i \) is the input state, \(u_i \) is the control output at the \(i \)-th time step, and \(N \) is the number of time steps. Differential dynamic programming maintains a second order local model of a \(Q \) function \(Q(i), Q_x(i), Q_u(i), Q_{xx}(i), Q_{uu}(i), Q_{um}(i) \), where \(Q(i) = r(x_i, u_i, i) + V(x_{i+1}, i + 1) \), and the vector subscripts indicate partial derivatives. We use simple notations \(Q(i) \) for \(Q(x_i, u_i, i) \) and \(V(i) \) for \(V(x_i, i) \). We can derive an improved control output \(u_i^{new} = u_i + \delta u \) from argmax \(\delta u Q(x_i + \delta x, u_i + \delta u, i) \). Finally, by using the new control output \(u_i^{new} \), a second order local model of the value function \(V(i), V_u(i), V_{xx}(i) \) can be derived [2], [4], and a new \(Q \) function computed.

A. Finding a local policy

DDP finds a locally optimal trajectory \(x_i^{opt} \), the corresponding control trajectory \(u_i^{opt} \), value function \(V^{opt} \), and \(Q \) function \(Q^{opt} \). When we apply our control algorithm to a real environment, we usually need a feedback controller to cope with unknown disturbances or modeling errors.
Fortunately, DDP provides us a local policy along the optimized trajectory:

$$u^{opt}(x_i, i) = u_i^{opt} + K_i(x_i - x_i^{opt}),$$ \hspace{1cm} (2)

where K_i is a time dependent gain matrix given by taking the derivative of the optimal policy with respect to the state [2], [4]. This property is one of the advantages over other optimization methods used to generate biped walking trajectories [1], [3].

B. Minimax DDP

Here, we introduce our proposed optimization method, minimax DDP, which considers robustness in a DDP framework. Minimax DDP can be derived as an extension of standard DDP [2], [4]. The difference is that the proposed method has an additional disturbance variable w to explicitly represent the existence of disturbances. This representation of the disturbance provides the robustness for optimized trajectories and policies [5].

Then, we expand the Q function $Q(x_i + \delta x, u_i + \delta u, w_i + \delta w, i)$ to second order in terms of δu, δw and δx about the nominal solution:

$$Q(x_i + \delta x, u_i + \delta u, w_i + \delta w, i) =$$

$$Q(i) + Q_x(i)\delta x_i + Q_u(i)\delta u + Q_w(i)\delta w_i$$

$$+ \frac{1}{2} \begin{bmatrix}
Q_{xx}(i) & Q_{xu}(i) & Q_{xw}(i) \\
Q_{ux}(i) & Q_{uu}(i) & Q_{uw}(i) \\
Q_{wx}(i) & Q_{wu}(i) & Q_{ww}(i)
\end{bmatrix}
\begin{bmatrix}
\delta x_i \\
\delta u_i \\
\delta w_i
\end{bmatrix}$$ \hspace{1cm} (3)

Here, δu_i and δw_i must be chosen to minimize and maximize the second order expansion of the Q function $Q(x_i + \delta x, u_i + \delta u, w_i + \delta w, i)$ in (3) respectively, i.e.,

$$\delta u_i = -Q_{uu}^{-1}(i)[Q_u(i)\delta x_i + Q_w(i)\delta w_i + Q_u(i)]$$

$$\delta w_i = -Q_{ww}^{-1}(i)[Q_w(i)\delta x_i + Q_u(i)\delta u_i + Q_w(i)].$$ \hspace{1cm} (4)

By solving (4), we can derive both δu_i and δw_i. After updating the control output u_i and the disturbance w_i with derived δu_i and δw_i, the second order local model of the value function is given as

$$V(i) = V(i + 1) - Q_u(i)Q_{uu}^{-1}(i)Q_u(i)$$

$$- Q_u(i)Q_{uw}^{-1}(i)Q_w(i)$$

$$V_x(i) = Q_x(i) - Q_u(i)Q_{uu}^{-1}(i)Q_{ux}(i)$$

$$- Q_u(i)Q_{uw}^{-1}(i)Q_{ux}(i)$$

$$V_{xx}(i) = Q_{xx}(i) - Q_{ux}(i)Q_{uu}^{-1}(i)Q_{ux}(i)$$

$$- Q_{uy}(i)Q_{uw}^{-1}(i)Q_{ux}(i).$$ \hspace{1cm} (5)

This equations can be derived by equating coefficients of identical terms in δx_i in the second order expansion of the value function $V(x_i + \delta x, i) = V(i) + V_x(i)\delta x_i + \frac{1}{2}V_{xx}(i)\delta x_i^2$ and equation (3) where δu_i and δw_i are derived as functions of δx_i.

Minimax DDP uses following sequence: 1) Design the initial trajectories. 2) Compute $Q(i)$, δu_i, δw_i, and $V(i)$ backward in time by using equations (15) in appendix A, (4), and (5). 3) Apply the new control output $u_{new} = u_i + \delta u_i$ and disturbance $w_{new} = w_i + \delta w_i$ and store the resulting trajectory generated by the model. 4) Go to 2) until the value function converges.

III. OPTIMIZING BIPED WALKING TRAJECTORIES

A. Biped robot model

In this section, we use a simulated five link biped robot (Fig. 1:Left) to explore our approach. Kinematic and dynamic parameters of the simulated robot are chosen to match those of a biped robot we are currently developing (Fig. 1:Right) and which we will use to further explore our approach. Height and total weight of the robot are about 0.4 m and 2.0 kg respectively. Table I shows the parameters of the robot model.

![Fig. 1. Left: Five link robot model. Right: Real robot](image)

<table>
<thead>
<tr>
<th>PHYSICAL PARAMETERS OF THE ROBOT MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>link1</td>
</tr>
<tr>
<td>mass (kg)</td>
</tr>
<tr>
<td>length (m)</td>
</tr>
<tr>
<td>inertia ($<10^{-4}$ [kg m2])</td>
</tr>
</tbody>
</table>

We can represent the forward dynamics of the biped robot as

$$x_{i+1} = f(x_i) + b(x_i)u_i,$$ \hspace{1cm} (6)

where $x = \{\theta_1, \ldots, \theta_5, \dot{\theta}_1, \ldots, \dot{\theta}_5\}$ denotes the input state vector, $u = \{\tau_1, \ldots, \tau_5\}$ denotes the control command (each torque τ_j is applied to joint j (Fig. 1:Left)). In the minimax optimization case, we explicitly represent the existence of the disturbance as

$$x_{i+1} = f(x_i) + b(x_i)u_i + b_n(x_i)w_i,$$ \hspace{1cm} (7)

where $w = \{w_0, w_1, w_2, w_3, w_4\}$ denotes the disturbance (w_0 is applied to ankle, and $w_j (j = 1 \ldots 4)$ is applied to joint j (Fig. 1:Left)).
B. Optimization criterion

We use the following objective function, which is designed to reward energy efficiency and enforce periodicity of the trajectory:

\[J = \Phi_p(x_0, x_N) + \sum_{i=0}^{N-1} r(x_i, u_i, j) \]

which is applied for half the walking cycle, from one heel strike to the next heel strike.\(^1\)

This criterion sums the squared deviations from a nominal trajectory, the squared control magnitudes, and the squared deviations from a desired velocity of the center of mass:

\[r(x_i, u_i, j) = (x_i - x_i^d)^T P (x_i - x_i^d) + u_i^T R u_i + (v(x_i) - v_i^d)^T S (v(x_i) - v_i^d), \]

where \(x_i \) is a state vector at the \(i \)-th time step, \(x_i^d \) is the nominal state vector at the \(i \)-th time step (taken from a trajectory generated by a hand-designed walking controller), \(v(x_i) \) denotes the velocity of the center of mass at the \(i \)-th time step, and \(v_i^d \) denotes the desired velocity of the center of mass. The term \((x_i - x_i^d)^T P (x_i - x_i^d) \) encourages the robot to follow the nominal trajectory, the term \(u_i^T R u_i \) discourages using large control outputs, and the term \((v(x_i) - v_i^d)^T S (v(x_i) - v_i^d) \) encourages the robot to achieve the desired velocity. We describe the terminal penalty in appendix B.

We implement minimax DDP by adding a minimax term to the criterion. We use a modified objective function:

\[J_{\text{minimax}} = J - \sum_{i=0}^{N-1} w_i^T G w_i, \]

where \(w_i \) denotes a disturbance vector at the \(i \)-th time step, and the term \(w_i^T G w_i \) rewards coping with large disturbances and prevents \(w_i \) from increasing indefinitely. This explicit representation of the disturbance \(w \) provides the robustness for the controller [5].

C. Learning the unmodeled dynamics

As in section IV-A, we have verified that minimax DDP can generate robust biped trajectories and local policies. The minimax DDP coped with larger disturbances than standard DDP or the hand-tuned PD servo controller. However, if there are modeling errors, using a robust controller which does not learn is not particularly energy efficient. Fortunately, with minimax DDP, we can collect sufficient data to improve our dynamics model. Here, we propose using Receptive Field Weighted Regression (RFWR) [6] to learn the error dynamics of the biped robot. In this section we present results on learning a simulated modeling error (the disturbances discussed in section IV). We are currently applying this approach to an actual robot.

We can represent the full dynamics as the sum of the known dynamics and the error dynamics \(\Delta F(x_i, u_i, j) \):

\[x_{i+1} = F(x_i, u_i) + \Delta F(x_i, u_i, j). \]

We estimate the error dynamics \(\Delta F \) using RFWR [6] (appendix C).

This approach learns the unmodeled dynamics with respect to the current trajectory. The learning strategy uses the following sequence: 1) Design a controller using minimax DDP applied to the current model. 2) Apply that controller. 3) Learn the actual dynamics using RFWR. 4) Redesign the biped controller using minimax DDP with the learned model. 5) Repeat steps 1-4 until the model stops changing. We show results in section IV-B.

IV. SIMULATION RESULTS

A. Evaluation of optimization methods

We compare the optimized controller with a hand-tuned PD servo controller, which also is the source of the initial and nominal trajectories in the optimization process. We set the parameters for the optimization process as \(P = 0.25 I_{10}, R = 3.0 I_4, S = 0.3 I_4 \). desired velocity \(v_i^d = 0.4 \text{[m/s]} \) in equation (9), \(P_0 = 1000000.0 I_4 \) in equation (17), and \(P_N = \text{diag} (10000.0, 10000.0, 10000.0, 10000.0, 10000.0, 10.0, 10.0, 10.0, 10.0, 5.0, 5.0) \) in equation (18), where \(I_N \) denotes \(N \) dimensional identity matrix. For minimax DDP, we set the parameter for the disturbance reward in equation (10) as \(G = \text{diag} (5.0, 20.0, 20.0, 20.0, 20.0) \) (\(G \) with smaller elements generates more conservative but robust trajectories). Each parameter is set to acquire the best results in terms of both the robustness and the energy efficiency. When we apply the controllers acquired by standard DDP and minimax DDP to the biped walk, we adopt a local policy which we introduced in section II-A.

Results in table II show that the controller generated by standard DDP and minimax DDP did almost halve the cost of the trajectory, as compared to that of the original hand-tuned PD servo controller. However, because the minimax DDP is more conservative in taking advantage of the plant dynamics, it has a slightly higher control cost than standard DDP. Note that we defined the control cost as \(\frac{1}{2} \sum_{i=0}^{N-1} ||u_i||^2 \), where \(u_i \) is the control output (torque) vector at \(i \)-th time step, and \(N \) denotes total time step for one step trajectories.

To test robustness, we assume that there is unknown viscous friction at each joint:

\[\tau_{j}^\text{dist} = -\mu_j \dot{\theta}_j \quad (j = 1, \ldots, 4), \]

where \(\mu_j \) denotes the viscous friction coefficient at joint \(j \).

1\(^To make a periodic trajectory, we use the terminal penalty \(\Phi_p(x_N, x_0) \), which depends on the initial state \(x_0 \), instead of using \(\Phi(x_N) \) in equation (1).
TABLE II
ONE STEP CONTROL COST (AVERAGE OVER 100 STEPS)

<table>
<thead>
<tr>
<th></th>
<th>PD servo</th>
<th>standard</th>
<th>minimax</th>
</tr>
</thead>
<tbody>
<tr>
<td>control cost</td>
<td>7.50</td>
<td>3.54</td>
<td>3.86</td>
</tr>
<tr>
<td>($\times10^{-2}$[N·m2])</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We used two levels of disturbances in the simulation, with the higher level being 3 times larger than the base level (Table III).

TABLE III
PARAMETERS OF THE DISTURBANCE

<table>
<thead>
<tr>
<th></th>
<th>μ_2 (hip joints)</th>
<th>μ_3 (hip joints)</th>
<th>μ_1 (knee joints)</th>
<th>μ_4 (knee joints)</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td>0.01</td>
<td>0.05</td>
<td>0.03</td>
<td>0.15</td>
</tr>
<tr>
<td>large</td>
<td>0.01</td>
<td>0.05</td>
<td>0.03</td>
<td>0.15</td>
</tr>
</tbody>
</table>

All methods could handle the base level disturbances. Both the standard and the minimax DDP generated much less control cost than the hand-tuned PD servo controller (Table IV). However, only the minimax DDP control design could cope with the higher level of disturbances. Figure 2 shows trajectories for the three different methods. Both the simulated robot with the standard DDP and the hand-tuned PD servo controller fell down before achieving 100 steps. The bottom of figure 2 shows part of a successful biped walking trajectory of the robot with the minimax DDP. Table V shows the number of steps before the robot fell down. We terminated a trial when the robot achieved 1000 steps.

TABLE IV
ONE STEP CONTROL COST WITH THE BASE SETTING (AVERAGED OVER 100 STEPS)

<table>
<thead>
<tr>
<th></th>
<th>PD servo</th>
<th>standard</th>
<th>minimax</th>
</tr>
</thead>
<tbody>
<tr>
<td>control cost</td>
<td>8.97</td>
<td>5.25</td>
<td>3.87</td>
</tr>
<tr>
<td>($\times10^{-2}$[N·m2])</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Optimization with learned model

Here, we compare the efficiency of the controller with the learned model to the controller without the learned model. To learn the unmodeled dynamics, we align 20 basis functions ($N_b = 20$ in equation (19)) at even intervals along the biped trajectories. Results in Table VI show that the controller after learning the error dynamics used lower torque to produce stable biped walking trajectories.

TABLE V
NUMBER OF STEPS WITH THE LARGE DISTURBANCES

<table>
<thead>
<tr>
<th></th>
<th>PD servo</th>
<th>standard</th>
<th>minimax</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of steps</td>
<td>49</td>
<td>24</td>
<td>>1000</td>
</tr>
</tbody>
</table>

V. OPTIMIZING SWING LEG TRAJECTORIES: APPLICATION TO THE REAL BIPED ROBOT

As a starting point to apply our proposed method to a real biped robot, we are optimizing swing leg trajectories in the simulator and applying these trajectories to our real biped robot (Fig. 1). Here, we focus on one leg (Fig. 3, 5). The goal of the task is to find low control cost swing leg trajectory starting from a given initial posture (θ_1, θ_2) = ($15, 0$)[deg] to a given desired terminal posture (θ_1^d, θ_2^d) = ($-20, 20$)[deg].

A. Optimization criterion

The penalty function for the task consists of the squared deviations from a nominal trajectory and the squared control magnitudes:

$$r(x_i, u_i, i) = (x_i - x_i^d)^T P (x_i - x_i^d) + u_i^T R u_i.$$ (13)
The terminal penalty function is defined as

$$\Phi(x_N) = (x_N - x_T^d)^T P_N (x_N - x_T^d),$$ \hspace{1cm} (14)$$

where x_T^d denotes the desired terminal state. Definitions of the other variables are the same as those in section III-B. For minimax DDP, we add a reward term $-w_i^T G w_i$ to increase robustness. We set the parameters as $P = 0.1 I_4$, $R = 10.0 I_2$, $P_N = \text{diag} \{5000.0, 5000.0, 10.0, 10.0\}$, and $G = 20.0 I_2$. We compared a PD servo controller, standard DDP and minimax DDP for deviation from the desired terminal posture and control cost on the real biped robot.

B. Real robot experiment

We applied the optimized trajectories and gains generated in the simulator to our real biped robot. The length of the trajectories was fixed at 0.3 sec. Then, the number of time steps N was fixed at 300 because control time step was set at 1 msec. Table VII shows the deviation from the terminal desired posture $\sum_{i=1}^N |\theta_i - \theta_i^d|$ at 0.3 sec. Results show that minimum deviation was realized by using proposed minimax DDP. However, the difference of the deviation was not significant. Fig. 4 shows an example of acquired swing leg trajectories generated by three different methods. Fig. 5 shows an acquired real robot swing leg trajectory generated by minimax DDP. Table VIII shows control cost for the swing movement (definition of the control cost is the same as that in section IV). Both DDP and minimax DDP generated swing leg trajectories have much lower control cost than the hand-designed controller (PD servo) on the real robot.

<table>
<thead>
<tr>
<th>PD servo</th>
<th>standard DDP</th>
<th>minimax DDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>deviation [deg]</td>
<td>4.79</td>
<td>4.82</td>
</tr>
</tbody>
</table>

TABLE VII

Deviation from terminal desired posture (average over 10 trials)

We showed that 1) DDP and minimax DDP can be applied to high dimensional problems, 2) minimax DDP can design more robust controllers than standard DDP, 3) learning can be used to reduce modeling error and unknown disturbances in the context of minimax DDP control design, and 4) DDP and minimax DDP can be applied to a real robot. Both standard DDP and minimax DDP generated low torque biped trajectories. We showed that the minimax DDP control design was more robust than the controller designed by standard DDP and the hand-tuned PD servo. Given a robust controller, we could collect sufficient data to learn the error dynamics using RFWR [6] without the robot falling down all the time. We also showed that after learning the error dynamics, the biped robot could find a lower torque trajectory. DDP and minimax DDP could generate low cost swing leg trajectories for a real biped robot. In this paper, we experimentally demonstrated the effectiveness of the proposed algorithm for trajectory optimization of the biped robot, however, our initial attempt to generate continuous locomotion with the proposed scheme has not yet succeeded. Our initial mechanical design, in particular, the mechanical structure and power transmission mechanism of the knee joint need additional modification. We are currently improving the design and structure of the leg parts. Experimental implementation of the proposed algorithm for locomotion is on-going and will be reported shortly. Using motion captured data from human walking [8] and scaling the data for the robot nominal trajectories instead of using a trajectory from the hand-designed PD servo controller will be considered in future work.

TABLE VIII

Control cost for the swing movement using the real robot (average over 10 trials)

Table:| Control cost | PD servo | standard DDP | minimax DDP |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\times 10^{-1} \langle N \cdot m^2 \rangle)$</td>
<td>3.63</td>
<td>0.93</td>
<td>1.23</td>
</tr>
</tbody>
</table>

VII. ACKNOWLEDGMENTS

We would like to thank Gordon Cheng, Jun Nakanishi, and the reviewers for their useful comments.

VIII. REFERENCES

where x propagated backward in time using:

$$\Phi_p(x_0, x_N) = \Phi_0(x_0) + \Phi_N(x_0, x_N).$$ \hfill (16)

The term $\Phi_p(x_0)$ penalizes an initial state where the foot is not on the ground:

$$\Phi_0(x_0) = h^T(x_0)P_0h(x_0),$$ \hfill (17)

where $h(x_0)$ denotes height of the swing foot at the initial state x_0. The term $\Phi_N(x_0, x_N)$ is used to generate periodic trajectories:

$$\Phi_N(x_0, x_N) = (x_N - H(x_0))^T P_N (x_N - H(x_0)),$$ \hfill (18)

where x_N denotes the terminal state, x_0 denotes the initial state, and the term $(x_N - H(x_0))^T P_N (x_N - H(x_0))$ is a measure of terminal control accuracy. A function $H()$ represents the coordinate change caused by the exchange of a support leg and a swing leg, and the velocity change caused by a swing foot touching the ground.

C. Approximation of Error Dynamics

Estimated error dynamics $\Delta \dot{F}$ is given as

$$\Delta \dot{F}(x_i, u_i, i) = \sum_{k=1}^{N_i} \alpha_i^k \phi_k(x_i, u_i, i),$$ \hfill (19)

$$\phi_k(x_i, u_i, i) = \beta_i^k \tilde{x}_i^k,$$ \hfill (20)

$$\alpha_i^k = \exp \left(-\frac{1}{2}(i-c_k)D_k(i-c_k) \right),$$ \hfill (21)

where, N_i denotes the number of basis function, c_k denotes center of k-th basis function, D_k denotes distance metric of the k-th basis function, β_k denotes parameter of the k-th basis function to approximate error dynamics, and $\tilde{x}_i^k = (x_i, u_i, i - c_k)$ denotes augmented state vector for the k-th basis function.

APPENDIX

A. Update rule for Q function

The second order local model of the Q function can be propagated backward in time using:

$$Q_a(i) = V_a(i+1)F_x + r_x(i)$$ \hfill (15)

$$Q_u(i) = V_u(i+1)F_u + r_u(i)$$

$$Q_w(i) = V_w(i+1)F_w + r_w(i)$$

$$Q_{xx}(i) = F_xV_{xx}(i+1)F_x + V_x(i+1)F_{xx} + r_{xx}(i)$$

$$Q_{uu}(i) = F_uV_{uu}(i+1)F_u + V_u(i+1)F_{uu} + r_{uu}(i)$$

$$Q_{ww}(i) = F_wV_{ww}(i+1)F_w + V_w(i+1)F_{ww} + r_{ww}(i)$$

$$Q_{uw}(i) = F_uV_{ux}(i+1)F_w + V_u(i+1)F_{uw} + r_{uw}(i),$$

where $x_{i+1} = F(x_i, u_i, w_i)$ is a model of the task dynamics.