Deriving a Marginal Student-t Distribution

Aaron A. D’Souza

Assume that x is a Gaussian distributed random variable with a known mean μ but unknown precision (inverse variance) ψ. This unknown precision is distributed according to a Gamma distribution with order and scale a and b respectively:

$$p(x|\psi) = \left(\frac{\psi}{2\pi}\right)^{1/2} \exp \left\{ -\frac{\psi}{2} (x - \mu)^2 \right\}$$

$$p(\psi) = \frac{b^a}{\Gamma(a)} \psi^{a-1} \exp(-b\psi)$$

The marginal distribution of x is derived as follows:

$$p(x) = \int p(x|\psi)p(\psi)d\psi$$

$$= \frac{b^a}{\Gamma(a)} \left(\frac{1}{2\pi}\right)^{1/2} \int \psi^{a+1/2-1} \exp \left\{ - \left[b + \frac{1}{2} (x - \mu)^2 \right] \psi \right\} d\psi$$

$$= \frac{b^a}{\Gamma(a)} \left(\frac{1}{2\pi}\right)^{1/2} \frac{\Gamma(a+1/2)}{\left[b + \frac{1}{2} (x - \mu)^2 \right]^{a+1/2}}$$

$$= \frac{\Gamma(a+1/2)}{\Gamma(a)} \left(\frac{1}{2\pi}\right)^{1/2} \frac{b^a}{\left[b + \frac{1}{2} (x - \mu)^2 \right]^{a+1/2}}$$

$$= \frac{\Gamma(a+1/2)}{\Gamma(a)} \left(\frac{1}{2\pi b}\right)^{1/2} \left[1 + \frac{(x - \mu)^2}{2b} \right]^{-(a+1/2)}$$

Hence the marginal distribution of x is a Student-t distribution with shape parameter a and scale parameter b. Figure 2 compares the conditional and marginal distributions of x under several Gamma distributions.
Figure 1: For the given Gamma distribution over ψ, we can compare the conditional and marginal distributions. Note that a higher variance Gamma distribution causes a greater smearing, resulting in a heavier tailed marginal distribution.