CS545—Contents IV

- Frequency Domain Representations
 - Laplace Transform
 - Most important Laplace Transforms
 - Transfer functions
 - Block-Diagram Algebra
 - Examples

- Matlab/Simulink Introduction
 - How to get started
 - The most relevant blocks and settings of Simulink

- Reading Assignment for Next Class
 - See http://www-clmc.usc.edu/~cs545
The Laplace Transform

- Properties of Frequency Domain Representations
 - A convenient method so solve (linear!) differential equations (even without a computer …) by converting them to algebraic equations
 - Makes system analysis easy, even for very big systems
 - Simple mathematics
 - Only applicable for linear time invariant systems!
 - Analyzes signals in terms of sinusoids and exponentials (includes Fourier transforms as special case)

Pierre-Simon, Marquis de Laplace 1749-1827
French Mathematician
The Laplace Transform

- The Core of Frequency Domain Analysis: The Laplace Transform

\[L(f(t)) = f(s) = \int_0^\infty f(t)e^{-st} \, dt \]

where

\[s = \sigma + j\omega \quad \text{and} \quad j = \sqrt{-1} \]
The Laplace transform. The Laplace transform converts a signal in the time domain, \(x(t) \), into a signal in the s-domain, \(X(s) \) or \(X(F,T) \). The values along each vertical line in the s-domain can be found by multiplying the time domain signal by an exponential curve with a decay constant \(F \), and taking the complex Fourier transform. When the time domain is entirely real, the upper half of the s-plane is a mirror image of the lower half.
Waveforms associated with the s-domain. Each location in the s-domain is identified by two parameters: \(\sigma \) and \(\omega \). These parameters also define two waveforms associated with each location. If we only consider pairs of points (such as A & A', B & B', and C & C'), the two waveforms associated with each location are sine and cosine waves of frequency \(\omega \), with an exponentially changing amplitude controlled by \(\sigma \).
Most Important Laplace Transforms

\[L(ax(t)) = aL(x(t)) \quad \text{where } a \text{ is a constant} \]
\[L(x(t)) = x(s) \]
\[L(u(t)) = u(s) \]
\[L(\dot{x}(t)) = sx(s) - x(0) \quad \text{(commonly, } x(0) = 0 \text{, accomplished by coordinate transformations)} \]
\[L(\ddot{x}(t)) = s^2x(s) \quad \text{(and analogues for higher derivatives)} \]
\[L(\int x(t)dt) = \frac{1}{s}x(s) \]
Transfer Functions

- The Transfer Function describes the Input-Output Relationship of a dynamical system:

\[x(s) = H(s)u(s) \]

- Example I:

 Time Domain:
 \[\ddot{x} = -b\dot{x} - kx + u \]

 Frequency Domain:
 \[s^2 x(s) = -bsx(s) - kx(s) + u(s) \]
 \[x(s) = \frac{1}{s^2 + bs + k} u(s) = H(s)u(s) \]
Transfer Functions (cont’d)

- Example II: An Integrator

\[\dot{x} = u \]

\[sx(s) = u(s) \quad \Rightarrow \quad x(s) = \frac{1}{s}u(s) \]

- Example III: A Simple Low Pass Filter

\[\dot{x} = \alpha(u - x) \]

\[sx(s) = -\alpha x(s) + \alpha u(s) \quad \Rightarrow \quad x(s) = \frac{\alpha}{s + \alpha}u(s) \]
Transfer Functions (cont’d)

- Example IV: A negative Feedback System

\[
\dot{x} = ax + bu = ax + bk(x_d - x)
\]

\[
sx(s) = ax(s) + bk(x_d(s) - x(s)) = ax(s) + bkx_d(s) - bkx(s)
\]

\[
x(s) = \frac{bk}{s - a + bk} x_d(s)
\]
Block Diagram Algebra

\[H(s) = H_1(s) + H_2(s) \]

\[H(s) = H_2(s)H_1(s) \]

\[H(s) = H_1(s)(I + H_2(s)H_1(s))^{-1} \]
Matlab/Simulink Simulations

- An Example