CS545—Contents IX

- Inverse Kinematics
 - Analytical Methods
 - Iterative (Differential) Methods
 - Geometric and Analytical Jacobian
 - Jacobian Transpose Method
 - Pseudo-Inverse
 - Pseudo-Inverse with Optimization
 - Extended Jacobian Method

- Reading Assignment for Next Class
 - See http://www-clmc.usc.edu/~cs545
The Inverse Kinematics Problem

- Direct Kinematics
 \[x = f(\theta) \]

- Inverse Kinematics
 \[\theta = f^{-1}(x) \]

- Possible Problems of Inverse Kinematics
 - Multiple solutions
 - Infinitely many solutions
 - No solutions
 - No closed-form (analytical solution)
Analytical (Algebraic) Solutions

- Analytically invert the direct kinematics equations and enumerate all solution branches
 - Note: this only works if the number of constraints is the same as the number of degrees-of-freedom of the robot
 - What if not?
 - Iterative solutions
 - Invent artificial constraints

- Examples
 - 2DOF arm
 - See S&S textbook 2.11 ff
Analytical Inverse Kinematics of a 2 DOF Arm

Inverse Kinematics:

\[x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) \]
\[y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2) \]

\[l = \sqrt{x^2 + y^2} \]
\[l_2^2 = l_1^2 + l^2 - 2l_1l \cos \gamma \]
\[\Rightarrow \gamma = \arccos \left(\frac{l^2 + l_1^2 - l_2^2}{2l_1l} \right) \]
\[\frac{y}{x} = \tan \varepsilon \quad \Rightarrow \quad \theta_1 = \arctan \frac{y}{x} - \gamma \]
\[\theta_2 = \arctan \left(\frac{y - l_1 \sin \theta}{x - l_1 \cos \theta_1} \right) - \theta_1 \]
Iterative Solutions of Inverse Kinematics

- Resolved Motion Rate Control

\[\dot{x} = J(\theta) \dot{\theta} \quad \Rightarrow \]

\[\dot{\theta} = J(\theta)^\# \dot{x} \]

- Properties
 - Only holds for high sampling rates or low Cartesian velocities
 - “a local solution” that may be “globally” inappropriate
 - Problems with singular postures
 - Can be used in two ways:
 - As an instantaneous solutions of “which way to take “
 - As an “batch” iteration method to find the correct configuration at a target
Essential in Resolved Motion Rate Methods: The Jacobian

- **Jacobian of direct kinematics:**

\[
x = f(\theta) \quad \Rightarrow \quad \frac{\partial x}{\partial \theta} = \frac{\partial f(\theta)}{\partial \theta} = J(\theta)
\]

- **In general, the Jacobian (for Cartesian positions and orientations) has the following form (geometrical Jacobian):**

\[
J(\theta) = \begin{pmatrix}
 j_{P1} & \cdots & j_{Pm} \\
 j_{O1} & \cdots & j_{Om} \\
\end{pmatrix}
\]

where

\[
\begin{pmatrix}
 j_{P1} \\
 j_{O1}
\end{pmatrix} = \begin{cases}
 \begin{bmatrix}
 z_{i-1} \\
 0 \\
 z_{i-1} \times (p - p_{i-1})
 \end{bmatrix} & \text{for a prismatic joint}
 \\
 z_{i-1} & \text{for a revolute joint}
\end{cases}
\]

\(p_i \) is the vector from the origin of the world coordinate system to the origin of the i-th link coordinate system, \(p \) is the vector from the origin to the endeffector end, and \(z \) is the i-th joint axis (p.72 S&S)
The Jacobian Transpose Method

\[\Delta \theta = \alpha J^T(\theta) \Delta x \]

- **Operating Principle:**
 - Project difference vector \(\Delta x \) on those dimensions \(q \) which can reduce it the most

- **Advantages:**
 - Simple computation (numerically robust)
 - No matrix inversions

- **Disadvantages:**
 - Needs many iterations until convergence in certain configurations (e.g., Jacobian has very small coefficients)
 - Unpredictable joint configurations
 - Non conservative
Jacobian Transpose Derivation

Minimize cost function

\[
F = \frac{1}{2} \left(\mathbf{x}_{\text{target}} - \mathbf{x} \right)^T \left(\mathbf{x}_{\text{target}} - \mathbf{x} \right)
\]

\[
= \frac{1}{2} \left(\mathbf{x}_{\text{target}} - f(\theta) \right)^T \left(\mathbf{x}_{\text{target}} - f(\theta) \right)
\]

with respect to \(\theta \) by gradient descent:

\[
\Delta \theta = -\alpha \left(\frac{\partial F}{\partial \theta} \right)^T
\]

\[
= \alpha \left(\left(\mathbf{x}_{\text{target}} - \mathbf{x} \right)^T \frac{\partial f(\theta)}{\partial \theta} \right)^T
\]

\[
= \alpha J^T(\theta) \left(\mathbf{x}_{\text{target}} - \mathbf{x} \right)
\]

\[
= \alpha J^T(\theta) \Delta \mathbf{x}
\]
Jacobian Transpose
Geometric Intuition
The Pseudo Inverse Method

\[\Delta \theta = \alpha J^T(\theta)(J(\theta)J^T(\theta))^{-1} \Delta x = J^\# \Delta x \]

- Operating Principle:
 - Shortest path in \(q \)-space

- Advantages:
 - Computationally fast (second order method)

- Disadvantages:
 - Matrix inversion necessary (numerical problems)
 - Unpredictable joint configurations
 - Non conservative
Pseudo Inverse Method
Derivation

For a small step Δx, minimize with respect to $\Delta \theta$ the cost function:

$$ F = \frac{1}{2} \Delta \theta^T \Delta \theta + \lambda^T (\Delta x - J(\theta)\Delta \theta) $$

where λ^T is a vector of Lagrange multipliers.

Solution:

(1) \[\frac{\partial F}{\partial \lambda} = 0 \Rightarrow \Delta x = J \Delta \theta \]

(2) \[\frac{\partial F}{\partial \Delta \theta} = 0 \Rightarrow \Delta \theta = J^T \lambda \Rightarrow J \Delta \theta = J J^T \lambda \]

\[\Rightarrow \lambda = \left(J J^T \right)^{-1} J \Delta \theta \]

insert (1) into (2):

(3) \[\lambda = \left(J J^T \right)^{-1} \Delta x \]

insertion of (3) into (2) gives the final result:

$$ \Delta \theta = J^T \lambda = J^T \left(J J^T \right)^{-1} \Delta x $$
Pseudo Inverse
Geometric Intuition

\[\text{start posture} = \text{desired posture for optimization} \]
Pseudo Inverse with explicit Optimization Criterion

\[\Delta \theta = \alpha J^\# \Delta x + \left(I - J^\# J \right) (\theta_0 - \theta) \]

- Operating Principle:
 - Optimization in null-space of Jacobian using a kinematic cost function
 \[F = g(\theta), \quad e.g., F = \sum_{i=1}^{d} (\theta_i - \theta_{i,0})^2 \]

- Advantages:
 - Computationally fast
 - Explicit optimization criterion provides control over arm configurations

- Disadvantages:
 - Numerical problems at singularities
 - Non conservative
Pseudo Inverse Method & Optimization Derivation

For a small step Δx, minimize with respect to $\Delta \theta$ the cost function:

$$F = \frac{1}{2} \left((\Delta \theta + \theta - \theta_o) \right)^T (\Delta \theta + \theta - \theta_o) + \lambda^T (\Delta x - J(\theta)\Delta \theta)$$

where λ^T is a vector of Lagrange multipliers.

Solution:

1. $\frac{\partial F}{\partial \lambda} = 0 \implies \Delta x = J \Delta \theta$

2. $\frac{\partial F}{\partial \Delta \theta} = 0 \implies \Delta \theta = J^T \lambda - (\theta - \theta_o) \implies J \Delta \theta = J J^T \lambda - J (\theta - \theta_o)$

 $\implies \lambda = (J J^T)^{-1} J \Delta \theta + (J J^T)^{-1} J (\theta - \theta_o)$

insert (1) into (2):

3. $\lambda = (J J^T)^{-1} \Delta x + (J J^T)^{-1} J (\theta - \theta_o)$

insertion of (3) into (2) gives the final result:

$$\Delta \theta = J^T \lambda - (\theta - \theta_o) = J^T (J J^T)^{-1} \Delta x + J^T (J J^T)^{-1} J (\theta - \theta_o) - (\theta - \theta_o)$$

$$= J^\# \Delta x + (I - J^\# J)(\theta_o - \theta)$$
The Extended Jacobian Method

\[\Delta \theta = \alpha \left(J^{\text{ext.}}(\theta)\right)^{-1} \Delta x^{\text{ext.}} \]

- **Operating Principle:**
 - Optimization in null-space of Jacobian using a kinematic cost function
 \[F = g(\theta), \quad \text{e.g., } F = \sum_{i=1}^{\theta} (\theta_i - \theta_{i,0})^2 \]

- **Advantages:**
 - Computationally fast (second order method)
 - Explicit optimization criterion provides control over arm configurations
 - Numerically robust
 - Conservative

- **Disadvantages:**
 - Computationally expensive matrix inversion necessary (singular value decomposition)
 - Note: new and better ext. Jac. algorithms exist
Extended Jacobian Method

Derivation

The forward kinematics $x = f(\theta)$ is a mapping $\mathbb{R}^n \rightarrow \mathbb{R}^m$, e.g., from a n-dimensional joint space to a m-dimensional Cartesian space. The singular value decomposition of the Jacobian of this mapping is:

$$J(\theta) = USV^T$$

The rows $[V_i]$ whose corresponding entry in the diagonal matrix S is zero are the vectors which span the Null space of $J(\theta)$. There must be (at least) $n-m$ such vectors ($n \geq m$). Denote these vectors $n_i, i \in [1, n-m]$.

The goal of the extended Jacobian method is to augment the rank deficient Jacobian such that it becomes properly invertible. In order to do this, a cost function $F = g(\theta)$ has to be defined which is to be minimized with respect to θ in the Null space. Minimization of F must always yield:

$$\frac{\partial F}{\partial \theta} = \frac{\partial g}{\partial \theta} = 0$$

Since we are only interested in zeroing the gradient in Null space, we project this gradient onto the Null space basis vectors:

$$G_i = \frac{\partial g}{\partial \theta} n_i$$

If all G_i equal zero, the cost function F is minimized in Null space.

Thus we obtain the following set of equations which are to be fulfilled by the inverse kinematics solution:

$$\begin{pmatrix} f(\theta) \\ G_i \\ \vdots \\ G_{m-n} \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

For an incremental step Δx, this system can be linearized:

$$\begin{pmatrix} J(\theta) \\ \frac{\partial G_i}{\partial \theta} \\ \vdots \\ \frac{\partial G_{m-n}}{\partial \theta} \end{pmatrix} \Delta \theta = \begin{pmatrix} \Delta x \\ 0 \\ 0 \\ 0 \end{pmatrix} \text{ or } J^{inv} \Delta \theta = \Delta x^{inv}.$$

The unique solution of these equations is: $\Delta \theta = (J^{inv})^{-1} \Delta x^{inv}$.
Extended Jacobian
Geometric Intuition