Inertial Sensor-Based Humanoid Joint State Estimation

Nicholas Rotella1, Sean Mason1, Stefan Schaal12, Ludovic Righetti2

1University of Southern California

2Max Planck Institute for Intelligent Systems
Motivation

- Many humanoids use a single IMU for base pose estimation
- Quality IMUs now relatively cheap/common
- What can we estimate with many IMUs on a robot?
Motivation

- Many humanoids use a single IMU for base pose estimation
- Quality IMUs now relatively cheap/common
- What can we estimate with many IMUs on a robot?
Motivation

- Many humanoids use a single IMU for base pose estimation
- Quality IMUs now relatively cheap/common
- What can we estimate with many IMUs on a robot?
Motivation

- Joint angle derivatives computed numerically
- Noise in measured angle necessitates filtering → time delay
- Idea: compute joint velocity and acceleration directly from devices which measure quantities on same order.
Motivation

- Joint angle derivatives computed numerically
- Noise in measured angle necessitates filtering \rightarrow **time delay**
- **Idea:** compute joint velocity and acceleration directly from devices which measure quantities on same order.
Motivation

- Joint angle derivatives computed numerically
- Noise in measured angle necessitates filtering → time delay
- **Idea:** compute joint velocity and acceleration directly from devices which measure quantities on same order.
Experimental Setup

Microstrain 3DM-GX3-25 IMU

- **3-Axis Gyroscope:**
 \[\vec{\omega}_{IMU} = R_{W}^{IMU} \vec{\omega}_{W}^{IMU} \]

- **3-Axis Accelerometer:**
 \[\vec{a}_{IMU} = R_{W}^{IMU} (\vec{a}_{W}^{IMU} + g) \]
Experimental Setup

Microstrain 3DM-GX3-25 IMU

- 3-Axis Gyroscope:
 \[
 \bar{\omega}_{IMU} = R_{W}^{IMU} \omega_{IMU}^{W}
 \]

- 3-Axis Accelerometer:
 \[
 \bar{a}_{IMU} = R_{W}^{IMU} (a_{IMU}^{W} + g)
 \]
Experimental Setup

Microstrain 3DM-GX3-25 IMU

- 3-Axis Gyroscope:
 \[
 \bar{\omega}_{IMU} = R_W^{IMU} \omega_W^{IMU}
 \]

- 3-Axis Accelerometer:
 \[
 \bar{a}_{IMU} = R_W^{IMU} (a_W^{IMU} + g)
 \]
Experimental Setup

Microstrain 3DM-GX3-25 IMU

▶ 3-Axis Gyroscope:

\[\bar{\omega}_{IMU} = R_{W}^{IMU} \omega_{IMU} \]

▶ 3-Axis Accelerometer:

\[\bar{a}_{IMU} = R_{W}^{IMU} (a_{W}^{IMU} + g) \]
Experimental Setup

Microstrain 3DM-GX3-25 IMU

- 3-Axis Gyroscope:
 \[\vec{\omega}_{\text{IMU}} = R_{\text{W}}^{\text{IMU}} \vec{\omega}_W \]

- 3-Axis Accelerometer:
 \[\vec{a}_{\text{IMU}} = R_{\text{W}}^{\text{IMU}} (a_W^{\text{IMU}} + g) \]
Joint Velocities from Gyroscopes

Express angular velocity measured by each IMU in terms of velocities of preceding joints in chain using kinematics.

- **Joint velocity:**
 \[
 \dot{\theta}_i = R_{W}^{i-1} \omega_{i-1,i}^W
 \]

- **Link \(i - 1\):**
 \[
 \bar{\omega}_{i-1} = R_{W}^{i-1} \omega_{i-1}^W
 \]

- **Link \(i\):**
 \[
 \bar{\omega}_i = R_{W}^i \omega_i^W
 = R_{W}^i (\omega_{i-1}^W + \omega_{i-1,i}^W)
 = R_{i-1}^i R_{W}^{i-1} \omega_{i-1}^W + R_{i-1}^i R_{W}^{i-1} \omega_{i-1,i}^W
 \]
Joint Velocities from Gyroscopes

Express angular velocity measured by each IMU **in terms of velocities of preceding joints in chain** using kinematics.

- **Joint velocity:**
 \[
 \dot{\theta}_i = R_{i-1}^W \omega_{i-1,i}^W
 \]

- **Link i − 1:**
 \[
 \bar{\omega}_{i-1} = R_{i-1}^W \omega_{i-1}^W
 \]

- **Link i:**
 \[
 \bar{\omega}_i = R_i^W \omega_i^W
 \]
 \[
 = R_i^W (\omega_{i-1}^W + \omega_{i-1,i}^W)
 \]
 \[
 = R_{i-1}^i R_{i-1}^{i-1} \omega_{i-1}^W + R_{i-1}^i R_{i-1}^{i-1} \omega_{i-1,i}^W
 \]
Joint Velocities from Gyroscopes

Express angular velocity measured by each IMU in terms of velocities of preceding joints in chain using kinematics.

- Joint velocity:
 \[\dot{\theta}_i = R_{W}^{i-1} \omega_{i-1,i} \]

- Link \(i - 1 \):
 \[\bar{\omega}_{i-1} = R_{W}^{i-1} \omega_{i-1} \]

- Link \(i \):
 \[\bar{\omega}_i = R_{W}^i \omega_i \]
 \[= R_{W}^i (\omega_{i-1} + \omega_{i-1,i}) \]
 \[= R_{i-1}^i R_{W}^{i-1} \omega_{i-1} + R_{i-1}^i R_{W}^{i-1} \omega_{i-1,i} \]
Joint Velocities and Accelerations from IMUs

- Solve the system:

\[
\begin{bmatrix}
I & 0 & 0 & \cdots & 0 \\
R_1^2 & I & 0 & \ddots & \vdots \\
R_1^3 & R_2^3 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & I & 0 \\
R_1^N & R_2^N & \cdots & R_{N-1}^N & I \\
\end{bmatrix}
\begin{bmatrix}
\dot{\theta}_0 \\
\dot{\theta}_1 \\
\vdots \\
\dot{\theta}_{N-2} \\
\dot{\theta}_{N-1} \\
\end{bmatrix} =
\begin{bmatrix}
\bar{\omega}_1 \\
\bar{\omega}_2 \\
\vdots \\
\bar{\omega}_{N-1} \\
\bar{\omega}_N \\
\end{bmatrix}
\]

- Same idea for joint acceleration from accelerometers
- Can automatically calibrate IMU pose relative to link
Joint Velocities and Accelerations from IMUs

▶ Solve the system:

\[
\begin{bmatrix}
 I & 0 & 0 & \cdots & 0 \\
 R_1^2 & I & 0 & \ddots & \vdots \\
 R_1^3 & R_2 & \ddots & \ddots & \vdots \\
 \vdots & \vdots & \ddots & I & 0 \\
 R_1^N & R_2^N & \cdots & R_{N-1}^N & I
\end{bmatrix}
\begin{bmatrix}
 \dot{\theta}_0 \\
 \dot{\theta}_1 \\
 \vdots \\
 \dot{\theta}_{N-2} \\
 \dot{\theta}_{N-1}
\end{bmatrix}
= \begin{bmatrix}
 \bar{\omega}_1 \\
 \bar{\omega}_2 \\
 \vdots \\
 \bar{\omega}_{N-1} \\
 \bar{\omega}_N
\end{bmatrix}
\]

▶ Same idea for joint acceleration from accelerometers

▶ Can automatically calibrate IMU pose relative to link
Joint Velocities and Accelerations from IMUs

- Solve the system:

\[
\begin{bmatrix}
I & 0 & 0 & \cdots & 0 \\
R_1^2 & I & 0 & \cdots & \vdots \\
R_1^3 & R_2^3 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & I & 0 \\
R_1^N & R_2^N & \cdots & R_{N-1}^N & I
\end{bmatrix}
\begin{bmatrix}
\dot{\theta}_0 \\
\dot{\theta}_1 \\
\vdots \\
\dot{\theta}_{N-2} \\
\dot{\theta}_{N-1}
\end{bmatrix}
=
\begin{bmatrix}
\bar{\omega}_1 \\
\bar{\omega}_2 \\
\vdots \\
\bar{\omega}_{N-1} \\
\bar{\omega}_N
\end{bmatrix}
\]

- Same idea for joint acceleration from accelerometers
- Can automatically calibrate IMU pose relative to link
In this work, we also:

- Estimate time-varying gyroscope biases
- Combine sensing modalities in joint state Kalman Filter
In this work, we also:

- Estimate time-varying gyroscope biases
- Combine sensing modalities in joint state Kalman Filter
Using IMU-based joint velocity, can increase feedback gain by 50% before instability, improving tracking.
Come chat with me for details! (Paper TuDbT2.1)